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Abstract. Repeatedly, dynamic flooding causes high loss in many mountain regions all 

over the world. Dynamic flooding is a group of hazard processes including fluvial sediment 

transport, debris floods, and debris flows, as well as to some extent flash flood hazards if 

these are related to mountain catchments. Regardless of the magnitude and frequency, the 

consequences of dynamic flooding are strongly connected to the vulnerability of elements 

at risk, such as people, buildings and infrastructure. Several methods to assess physical 

vulnerability of buildings towards these processes are available. The plethora of methods 

and approaches, however, makes a comparison between different case studies challenging. 

Assessment methods can be classified in three categories: vulnerability matrices, 

vulnerability curves and vulnerability indices. We provide a short review of these methods 

and discuss their dominance in the scientific debate on mountain hazard risk management 

over the last decade, giving an emphasis to vulnerability curves. Furthermore, challenges 

in vulnerability assessment including data requirements, uncertainties, and needs for 

improved event documentation are outlined. 
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Аннотация. Неоднократно динамические наводнения приводили к большим 

потерям во многих горных регионах по всему миру. Динамические наводнения 

представляют собой группу опасных процессов, включающих транспорт речных 

наносов, селевые паводки и потоки, а также в некоторой степени ливневые паводки, 

если они связаны с горными речными бассейнами. Независимо от масштабов и 

частоты, последствия динамических наводнений тесно связаны с уязвимостью 

подвергающихся риску элементов, таких как люди, здания и инфраструктура. 

Существует несколько методов оценки физической уязвимости зданий по 

отношению к этим процессам. Однако обилие методов и подходов затрудняет 

сравнение различных тематических исследований. Методы оценки можно разделить 

на три категории: матрицы уязвимости, кривые уязвимости и индексы уязвимости. 

В данной статье дается краткий обзор этих методов и обсуждается их 

доминирующее положение в научных дискуссиях по управлению рисками, 
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связанными с опасностями в горных районах, за последнее десятилетие, особое 

внимание уделяется кривым уязвимости. Кроме того, излагаются задачи в области 

оценки уязвимости, включая требования к данным, факторы неопределенности и 

потребности в улучшении документации событий. 
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Introduction 

Mountain areas are high-risk environments threatened by a range of natural hazards, such 

as dynamic flooding, landslides and snow avalanches. Dynamic flooding is defined as 

constantly or temporarily flowing watercourses with strongly changing perennial or intermittent 

discharge and flow conditions, originating within small and steep catchment areas often located 

in mountain environments [ONR, 2009]. Despite their differences in terms of time of onset, 

duration, frequency and magnitude, dynamic flooding includes a variety of different processes 

which can be categorised by peak discharge [Hungr et al., 2001] or sediment concentration 

[Costa, 1984]. These processes include fluvial sediment transport, debris flows and debris 

floods. Furthermore, even if defined by space-time scales rather than sediment concentration, 

flash floods in mountain areas can be included if these are related to torrential catchments 

[Borga et al., 2014]. All these processes are further referred to as “dynamic flooding”. 

Dynamic flooding repeatedly results in considerable damage to infrastructure and 

buildings, despite high investments in hazard and risk mitigation [Fuchs et al., 2015; Zhang et 

al., 2018; Zischg et al., 2018; Zou et al., 2018; Schlögl et al., 2019] which is frequently 

attributed to both, the effects of climate change leading to changes in frequency and magnitude 

of events [Huggel et al., 2019] and the effects of socio-economic development leading to a 

higher asset concentration [Fuchs et al., 2017; Löschner et al., 2017; Röthlisberger et al., 

2017]. Other drivers, such as urbanization, economic degradation, deforestation and 

overgrazing may additionally influence the impact of natural hazards on mountain communities 

[Zimmermann and Keiler, 2015; Klein et al., 2019]. As the vulnerability of communities 

experiencing the impact of such dynamics is still less well known [UN/ISDR, 2015], there is a 

need for improved understanding of disaster risk in all its dimensions, above all, exposure and 

vulnerability.  

Vulnerability is multidimensional [physical, social, economic, environmental, etc., 

Fuchs and Thaler, 2018], however, despite a considerable amount of research efforts, only little 

is known with respect to the physical vulnerability and resilience of elements at risk [Golz et 

al., 2015; Schinke et al., 2016; Bozza et al., 2018; Fuchs et al., 2018; Sturm et al., 2018a]. With 

respect to methods for an assessment of the physical vulnerability of exposed buildings, some 

scholars focused on mountain hazards in general [Papathoma-Köhle et al., 2011] and some 

specifically on dynamic flooding [Papathoma-Köhle et al., 2017]. Short reviews can be found 

in many papers and studies such as the ones of Fuchs et al. [2007], Akbas [2009], Sterlacchini 

et al. [2013], Totschnig and Fuchs [2013] Carisi et al. [2018] and Milanesi et al. [2018] who 

provide short discussions on functional vulnerability relationships to be used in risk assessment. 

This paper summarises methods for physical vulnerability assessment as far as dynamic 

flooding is concerned, with a particular focus on vulnerability curves, on alternative assessment 

methods and on challenges and recommendations for future research. 

The first attempts to assess physical vulnerability to the built environment were 

vulnerability matrices, a qualitative method to relate hazard intensities to associated 

consequences such as damage or loss. Over time, these matrices evolved to the more 

quantitative methods such as vulnerability curves, and, more recently, vulnerability indicators 
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employed for the assessment of physical vulnerability of buildings. The advantages and 

disadvantages of these three methodological approaches are summarised in Table [Papathoma-

Köhle et al., 2017]. 

 
Table. Overview of existing methods for the assessment of physical vulnerability regarding torrential 

hazards [modified from Papathoma-Köhle et al., 2017] 

 
Method Advantages Shortcomings 

Vulnerability 

matrices 

Qualitative method, no need 

for ex-ante data or detailed 

information 

Results may not be translated into monetary 

loss. Assessment of damage under specific 

intensities or process characteristics is 

objective. 

Vulnerability 

curves 

The method is quantitative 

and may “translate” an event 

into monetary cost 

Important characteristics of the natural process 

(e.g. velocity, duration, direction etc.) as well 

as the element at risk (number of floors, 

construction material) are ignored. Highly-

demanding in ex-post information 

Vulnerability 

indicators 

Characteristics of the element 

at risk are taken into 

consideration 

The intensity of the process is not considered, 

demanding in data (detail, amount quality) 

 

Vulnerability functions 

Vulnerability functions are a quantitative method for assessing the vulnerability of 

buildings. They are widely used for assessing risk from hazards such as earthquakes and 

riverine floods where data is available in a sufficient quantity to create a reliable curve. 

Vulnerability functions are continuous curves that relate the hazard intensity (X-axis) to the 

damage state of a building (Y-axis) [Tarbotton et al., 2015]. In the case of static (riverine) 

flooding, intensity on the X-axis is often expressed as the inundation height. In dynamic 

flooding, however, damage patterns may be different from static inundation. Although the flow 

height of debris is mostly used as proxy for the hazard intensity [see Fuchs et al., 2019 for an 

overview], other factors such as velocity, orientation and duration of the flow as well as 

viscosity of the material are also important [Quan Luna et al., 2011; Rheinberger et al., 2013; 

Mazzorana et al., 2014; Carisi et al., 2018]. Such information, however, is rarely measured 

during event documentation [Fuchs et al., 2007], and only little information is available from 

laboratory experiments [Zhang et al., 2016; Sturm et al., 2018b], and effects of these factors on 

the overall degree of loss remain largly unknown. Moreover, recent studies unveiled limitations 

during model application with respect to the spatial extent of deposition heights [Chow et al., 

2018; Milanesi et al., 2018] and resulting loss pattern [Fuchs et al., 2012]. Consequently, only 

a simplified representation of complex damaging processes is repeatedly used in vulnerability 

assessment, and results are therefore hardly transferable among different case studies 

[Cammerer et al., 2013; Papathoma-Köhle et al., 2017; Mosimann et al., 2018]. 

Hence, the majority of studies on dynamic flooding rely on vulnerability functions with 

limited data quantity and a high spread in data [Eidsvig et al., 2014]. The shape of the final 

curve depends on the statistical method used (regularly curve fitting based on non-linear 

regression) and therefore on the type of function selected. In more detail, once individual 

buildings are represented as points on a XY axis system then a function ensuring the best fit to 

the data may be chosen, and the associated error statistics such as R^2 (coefficient of 

determination) or RMSE (Root Mean Square Error) define its reliability. The function with the 

best fit should minimize the squared differences in data, which is consistent with the classical 

approach of curve fitting. Recent studies repeatedly computed Weibull distribution functions 

to mirror the overall relationship between hazard magnitude and observed degree of loss 

[Totschnig and Fuchs, 2013; Papathoma-Köhle et al., 2015]. 

Uncertainties of aleatory type can be expressed by confidence intervals, which depend 

on the distribution of errors. These uncertainties are based on the assumption of symmetrically 
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distributed errors around the mean degree of loss, which is hardly confirmed by empirical data. 

Moreover, the data spread of Weibull functions results in theoretical loss values above one and 

below zero, which is inconsistent with the definition of vulnerability. The observed loss pattern 

is characterized by less data with high values (larger degree of loss until complete destruction) 

than with small values (lower degree of loss), and the data showed a right-skewed distribution 

[Totschnig and Fuchs, 2013; Papathoma-Köhle et al., 2015]. The larger loss values tended to 

be farther away from the mean degree of loss than the smaller values. Hence, a suitable and 

stochastically valid probability model should be able to represent this skewness, which requires 

a parametric assumption and the selection of a probability distribution enabling the statistical 

treatment of uncertainties. A lack of predictive power of the degree of loss for future events is 

evident since current approaches were based on spurious error assumptions [Fox, 2016]. 

Furthermore, even if information on the monetary loss per building is required for the 

computation of vulnerability curves, such data are not always available and the cost of 

necessary repair works have been used as a proxy instead [e.g., Holub and Fuchs, 2008; 

Papathoma-Köhle et al., 2012; Golz et al., 2015; Neubert et al., 2016; Schinke et al., 2016]. 

Furthermore, economic values may differ significantly between individual buildings 

concerning the economic assessment of the overall reconstruction value. Consequently, the 

degree of loss (the ratio between the monetary loss and the value of the building) is often 

misleading since some buildings have an remarkably high value due to a high number of floors 

which influences the degree of loss in a negative way. An alternative approach to calculating 

loss (e.g. damage/m^2 per affected floor) may be the key to reduce uncertainties in this respect. 

Moreover, bias may occur as data on monetary loss often also includes additional compensation 

for the content of buildings or auxiliary buildings in the property, such information has to be 

excluded before vulnerability computation. 

Vulnerability indicators 

The use of vulnerability indicators could be useful to qualitatively assess vulnerability 

since physical vulnerability is dependent on building characteristics. This approach includes 

the selection of indicators relevant for the occurrence of a loss, the identification of their 

variables, weighting and finally aggregation in a vulnerability index. One of the first attempts 

to use such indices was made by Papathoma-Köhle et al. [2007] for buildings exposed to 

landslides in mountain areas. The method was later applied by Kappes et al. [2012] without 

considering the hazard intensity; this was only done by Silva and Pereira [2014] by using 

indicators such as construction material and technique, number of floors, floor and roof 

structure, etc. A similar approach was also chosen by Mazzorana et al. [2014] and Milanesi et 

al. [2018] in order to link the structural resistance of a building to the hazard magnitude. Thouret 

et al. [2014] as well as Ettinger et al. [2016] used indicators to assess the physical vulnerability 

of buildings to debris flows in the Peruvian Andes. Thouret et al. [2014] presented results from 

an analysis of high-resolution satellite imagery based on indicators such as building type, 

number of floors, percentage and quality of building openings and roof type. Using the same 

data together with ground truth observation, Ettinger et al. [2016] reported vulnerability indices 

based on indicators such as shape of city block and building density, building footprint, number 

of stories, as well as distance of buildings from channels and bridges. Finally, Thennavan et al. 

[2016] reported physical vulnerability indices for buildings in Indian Western Ghats hill ranges, 

based on the method of Papathoma-Köhle et al. [2007]. With respect to dynamic flooding, 

however, Papathoma-Köhle et al. [2017] concluded that the fact that the required data are of 

high resolution and detail makes the use of indicators challenging. In contrast, once also 

empirical data on damage are available, the interaction of the process with different building 

characteristics can be studied and empirical weighting may become possible. Nevertheless, 

additional research is needed for an improved selection of indicators, a better and reliable 

weighting and aggregation method and for consistent scenarios as a basis of the assessment 

[Papathoma-Köhle et al., 2019]. Moreover, as indicator-based approaches require detailed 

inventories of elements at risk, alternative ways of data mining such as remotely-sensed data 
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(e.g. Google street view), using questionnaires, and citizen-science increasingly gain 

importance [Haworth and Bruce, 2015]. 

Laboratory experiments supporting vulnerability assessment 

Despite the numerous studies on the physical vulnerability of buildings, there is still a 

gap concerning the interaction between the hazard process and the building envelope. 

Numerical modelling based on laboratory experiments may be used to overcome this gap [Gems 

et al., 2016]. The information acquired may replace or complement empirical data, as shown 

by some scholars for static inundation [Armanini et al., 2011; Scheidl et al., 2013; Mazzorana 

et al., 2014; Zhang et al., 2016]. However, similar studies focusing on dynamic flooding in 

mountain catchments are still scarce. Regarding laboratory experiments, a remarkable effort to 

study and quantify the interaction between buildings and dynamic flooding has been made by 

Sturm et al. [2018a, b]. They used a 1:30 scaled fan model including building stock to capture 

the process impact pressure on the building envelope under different scenarios. The results of 

the measurements not only provided information on flow heights and impact pressure per 

building, but they also demonstrated the importance of scale in vulnerability assessment: while 

some of the buildings acted as protective shields for neighbouring buildings, they redirected the 

flow and finally increased the damage for other buildings. Moreover, it was shown that 

windows and other openings reduce the impact pressure on the walls decreasing at the same 

time the probability of a wall to collapse. Finally, Milanesi et al. [2018] studied the stability 

thresholds and the collapse mechanisms of traditional alpine masonry buildings exposed to 

hyperconcentrated flows using limit analysis, and the results were compared to the results of 

finite element analysis. Such studies can enhance the knowledge on building retrofitting and 

local structural protection, as shown by Holub et al. [2012] with respect to an idealised hazard-

proof residential building in the Austrian Alps. 

Conclusion and the way forward 

The reliability of vulnerability curves is based on available empirical data related to the 

damage pattern of buildings following the impact of dynamic flooding. A thorough and 

standardised post-event documentation is necessary to increase the overall preciseness of such 

curves and to compute multiple curves for different building types as well as for buildings with 

common characteristics (e.g. buildings with basement, brick buildings, reinforced concrete 

buildings). Vulnerability indicators may be used to supplement vulnerability curves and to 

overcome the current scarceness in data. 

The predictive power of vulnerability curves together with vulnerability indices could be 

enhanced using complementary empirical data based on a classification of elements at risk. In 

particular, a building-type based approach that uses dependencies between hazard and damage 

patterns for specific building categories can be helpful to estimate potential damage costs prior 

to disastrous events, provided it will be extended for dynamic flooding [e.g., Golz et al., 2015; 

Schinke et al., 2016].  

Additionally, no physical vulnerability assessment is complete without the consideration 

of buildings of special use and infrastructure (critical infrastructure). So far, buildings such as 

hospitals or those related to other critical infrastructure cannot be included in the traditional 

vulnerability curves based on residential or commercial buildings. Moreover, studies of 

vulnerability curves for roads or other transport networks are also limited [Unterrader et al., 

2018; Schlögl et al., 2019], and future research should be conducted in this direction. Finally, 

yet importantly, a significant challenge is the fact that vulnerability curves are often site-

specific and therefore not always transferable among case studies.  

The recent advances in vulnerability assessment methods for buildings threatened by 

dynamic flooding presented in this paper clearly show that there is still a need for further 

research in this field. Existing vulnerability curves may be improved with the availability of 

additional damage data and alternative methods such as indicator approaches may be used alone 

or in combination to shed light on the interaction between natural processes and elements at 
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risk. All this knowledge will contribute to the enhanced assessment of risk, to target-oriented 

mitigation and to the design of suitable risk reduction strategies. 
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